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Abstract A model based on Reddy’s discrete layerwise laminate theory is employed to
simulate the high-frequency (short-wavelength) excitation, propagation, and sensing, of
structural waves in composites containing piezoelectric sensors and actuators. Com-
parisons between approximate and exact wave dispersion spectra are performed in order
to assess the efficiency of the layerwise theory in the high-frequency range. A study
of the propagation of guided waves in an 11-ply ARALL beam with bonded PZT layers
is reported. It is shown that, by employing the appropriate interpolation scheme, the
approximate model is capable of reproducing the exact dispersion spectrum at wavelengths
to thickness ratios as low as λ/h = 0.25. Finally, results from simulations of the broad-
band, frequency response of an active aluminum beam with simulated defects of different
depths are presented and compared with data from similar experiments.
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1. INTRODUCTION

The electromechanical behavior of piezoelectric laminates has been extensively stu-
died in the past few years. Most of the studies to date have been concerned with
vibration and structural acoustic control, where the dynamic response is within the
modal domain. Few attempts have been made to evaluate the effectiveness of avail-
able laminate models in the high-frequency range. The present contribution addresses
the problem of modeling the excitation, propagation, and sensing, of high-frequency
(short-wavelength) structural waves in composites containing piezoelectric sensors and
actuators. Potential applications are related with health monitoring and damage de-
tection in composite structures. As schematically depicted in Figure 1, piezoelectric
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actuators may be employed to launch guided waves which, after interacting with struc-
tural defects such as voids, cracks, or delaminations, are sensed by the same or other
piezoelectric elements, also bonded or embedded in the composite. Efforts towards
the development of this approach to health monitoring have been recently reported by
Monkhouse et al. (1998), Badcock and Birt (1998), and Lin and Chang (1999).

Figure 1: Health monitoring using bonded piezoelectric sensors and actuators

The resolution of this on-board, non destructive evaluation tool increases as the
wavelengths of the guided waves in the structure become shorter. In the case of slender
elements, such wavelengths may be much smaller than the structure’s thickness. At this
high-frequency range, the well-known models for the excitation and sensing of bonded
or embedded piezoelectric patches, often based on static equivalent forces or bending
moments, are no longer accurate (Braga et al., 1998; de Barros, 1998). Simulations of
the interactions between sensors/actuators and the host structure must now take into
account the coupled electromechanical equations. Furthermore, at this short-wavelength
range, classical as well as some of the higher order shear deformation laminate theories
fail to accurately represent the dynamic response of the slender composite structure
(Braga et al., 1998). Finite element simulations must also be employed with caution,
since very thin meshes are needed to capture the rapidly varying oscillating fields (Gama,
1998; de Barros, 1998).

The model for the active composite beam proposed here is based on Reddy’s layer-
wise laminate theory (Robbins and Reddy, 1991; Reddy, 1993; Robbins and Reddy, 1994;
Lee and Saravanos, 1997). The displacement and electric potential are interpolated in
the through-thickness direction using piecewise linear functions. In the frequency do-
main, the governing equations are written in a state space form. Comparisons between
approximate and exact wave dispersion spectra are performed in order to assess the effi-
ciency of the layerwise theory in a given frequency range. It is shown that by employing
the proper interpolation, Reddy’s theory is able to describe the dynamic response of
the composite at frequencies where the associated wavelengths are of the same order
or even shorter than the thickness of the anisotropic and/or piezoelectric layers. This
is verified in a study of the dispersion spectrum of guided waves propagating in an
composite beam with PZT layers bonded to its surface.

In the case of a beam with abrupt changes in thickness, introduced in order to
simulate structural defects, the solution for the state space equation is obtained by em-



ploying an algorithm based on a discrete version of the Riccati transformation (Gama,
1998; de Barros, 1998). Results from evaluations of the broad-band, frequency response
of an active aluminum beam with simulated defects of different depths are presented,
and compared with data from similar experiments. Despite the number of simplifica-
tions used in the approximate model, the qualitative agreement between numerical and
experimental results is quite satisfactory. In addition, it is verified that, as one might
expect, the influence of the defect depth on the sensor response increases with the fre-
quency of the acoustic signal. It is also shown that placing the piezoelectric sensor near
the simulated defect, sharply improves its ability to sense changes in size of the defect.

2. MODEL FOR LAMINATED PIEZOELECTRIC BEAMS

We employ Reddy’s layerwise theory (Reddy and Robbins, 1994) to describe the
response of laminate piezoelectric beams. This approximate theory is based on the
following assumed, through-thickness, distributions of the displacement field:

ux(x, z, t) =
N∑

α=1

ξα(z) Uα(x, t) and uz(x, z, t) =
M∑

β=1

ξβ(z) Wβ(x, t) (1)

and of the electric potential:

φ(x, z, t) =
P∑

γ=1

ξγ(z)Vγ(x, t) (2)

Although in Reddy’s Layerwise Theory the degree and number of the interpolation
functions ξα(z), are arbitrary, we are employing in this paper only linear, Lagrange
polynomials. The number of polynomials is equal to the number of layers plus one, that
is, we take α, β, γ = 1, 2, . . . , n, n + 1, where n is the number of layers in the laminate.
Hence Uα and Wα are, respectively, the in-plane and transverse displacements at the
interface between the layers α−1 and α. Accordingly, Vα represents the electric potential
on the same interface. We may, arbitrarily, increase the number of linear interpolation
polynomials by subdividing the homogeneous layers in thinner sublayers, with the same
material properties as the original ones.

Generalized forces and charges are defined as (Braga, et al., 1998, Gama, 1998):

Nα
I =

∫
R

TI ξα dA, and jα =
∫
R

D1 ξα dA, (3)

where I = 1, 3, 5, and R is the beam’s cross-section, while TI represents the stress
components and Dx the electric displacement in the x direction.

In the model, it is also important to make a distinction between those interfaces with
or without electrodes. Since the electric potential is uniform at the perfectly conductive
electrodes, we let

∂V e
α

∂x
= 0 (4)



at the electroded interfaces, identified by the label e. Also, due to the current flowing
through the electrode and its electric connection, the transverse component of the elec-
tric displacement may experience a jump, which is equal to the surface charge density
at that interface. Furthermore, if the electrode belongs to an actuating lamina, V e

α is
given, and qe

α is not known. If, on the other hand, the electrode is placed on a sensor,
one may consider two measurement configurations. In the first, the electric charge, or
current, is the measured quantity, V e

α = 0 (short-circuit), and qe
α is the unknown vari-

able that must be integrated over the length of the electrode to yield the sensor output.
On the other hand, if voltage across the piezoelectric layer is being measured, we set
qe
α = 0 (open-circuit) and then solve the governing equations to evaluate V e

α , the sensor
response. In yet another sensor configuration, not explicitly considered here, one may
take into account the impedance of the measurement circuit by introducing a linear
relationship between the voltage and the electric current (Carpenter, 1997).

On the non electroded interfaces, such as those between sublayers introduced to
refine the through-thickness interpolation, the potential is not necessarily uniform, and
the electric displacement must be continuous, hence:

qo
α = 0 (5)

where the label o is used to identify those interfaces.
It may be shown that by applying Reddy’s approximation in the variational formu-

lation for piezoelectric media, the set of equations governing the time-harmonic response
of piezoelectric composite beams may be cast in the following matrix form (Braga et
al., 1998; Gama, 1998; de Barros, 1998):

dζ

dx
= M ζ + H V e and qe = S ζ + P V e (6)

with the state vector, ζ, defined as:

ζT =
[
U W V o N1 N5 jo

]
(7)

where U , W , N1, and N5 are vectors of dimension n + 1 grouping, respectively, the
variables Uα, Wα, Nα

1 , and Nα
5 . The dimension of vectors V e, qe, V o and jo, respec-

tively grouping V e
α , qe

α, V o
α , and jα

o , will depend on the number of interfaces with and
without electrodes. Matrices M, H, S, and P , whose components have been omitted
here due to the lack of space, depend on the mechanical, piezoelectric, and dielectric
material constants (Gama, 1998; de Barros, 1998).

The first of Eqs. (6) describes the time-harmonic response of the piezoelectric beam
to the imposed electric potential V e. The second, relates the electric charge on the
electrodes with the other field variables. When one of the layers is used as a charge
sensor we simulate its response by, as pointed out above, letting the electric potential
be equal to zero on its surfaces, and, through the second equation of (6), evaluating
the resulting electric charges. Equations (6) must be slightly modified when the layer
is employed as a voltage sensor. Details of this modifications are also omitted here due
to lack of space (Gama, 1998).



3. WAVE DISPERSION ANALYSIS

In this section, we present a study of the dispersion spectrum of the guided wave-
modes that propagate along an 11-ply beam made of ARALL, which is a compos-
ite fabricated from alternate layers of alluminum and uniderctional, fiber reinforced,
aramide-epoxi laminae. In addition, the beam has piezoceramic (PZT) layers on its top
and bottom surfaces. Both the aluminum and the aramide-epoxi layers are 1 mm-thick.
The thickness of the PZT layers are 2 mm. Mechanical, piezoelectric, and dielectric
properties of alluminum, aramide-epoxi, as well as for the piezoceramic material con-
sidered in this study, may be found in (Gama, 1998).

In the wave dispersion analysis presented here, the piezoelectric layers were assumed
to be short-circuited. Dispersion curves, which relate the wavenumber of the guided
modes with the frequency, are constructed by applying the approximate model described
above as well as by solving the equations governing the electroelastic dynamic response
of the layered piezoelectric solid. Details of the algorithm employed to obtain the exact
dispersion curves may be found in (Braga et al., 1992; Gama, 1998).

The approximate dispersion curves are obatined by observing that for a short-
circuited beam, the vector V e in equation (6) vanishes. Hence, one has

dζ

dx
= M ζ (8)

For an infinite beam, M is uniform, and therefore the solution of (8) is

ζ(x) =
n+1∑
j=1

aj ζj eαjx (9)

where αj and ζj are the eigenvalues and eigenvectors of the state matrix M, while
aj are constants, and n is the number of layers employed in the approximate model.
Each term in the sum may be associated with one guided mode in the beam. Imaginary
values of αj represent traveling waves, whereas those eigenvalues with nonvanishing real
part are related to evanescent modes. It should be pointed out that the state matrix
has the following property (Gama, 1998):

TMT T = −MT , where T =

[
0 I
−I 0

]
(10)

where I is the identity matrix. It may be shown that, as a consequence of (10), the
eigenvalues of M appear in pairs of opposite signs. This simply expresses the fact that
the guided modes propagate with the same wave speed, or, in the case of evanescent
waves, are equally attenuated, in both directions of the x-axis.

A plot of both the exact and approximate dispersion spectra for the ARALL/PZT
beam is shown in Figure 2. Only the travelling wave-modes, i.e., those for which the
eigenvalue αj is imaginary, are represented. The matching between exact and approxi-
mate dispersion curves is very good, even for modes with wavelength to thickness ratios
as low as λ/h = 0.25.



Figure 2: Dispersion spectrum for a 15 mm-thick ARALL/PZT beam.

In Figures 3 and 4, we present through-thickness distributions of the displacement
and electric potential fields for two guided wave-modes that may propagate freely in
the composite beam. In both cases, even though the wavelengths are shorter than the
beam thickness, the agreement between the exact and approximate solutions is very
good. In Figure 3, at 36 kHz and λ/h = 2, it is interesting to observe the zigzag-like
distribution of the in-plane displacement, typical of the medium frequency range for
this composite with alternating layers of materials with very dissimilar shear moduli.
It is then clear that other laminate theories, such as the Classical or the First Order
Shear Deformation, that assume linear through-thickness distributions of the in-plane
displacement, are unable to represent the dynamic response of the ARALL/PZT beam
at this frequency range. Regarding Figure 4, representing a guided mode that, at
501 kHz, has a wavelength which is one fourth of the beam thickness, one notices that
the wave profile is typical of a surface wave. Indeed, we observe that the fields decay
very rapidly away from the beam’s top and bottom surfaces. It should be pointed out,
however, that at this short wavelength range, the interpolation in the layerwise theory
must be refined in order to capture those sharp gradients in the displacement field. In
this case, we have employed 53 piecewise interpolation functions.

4. ANALYSIS OF AN ACTIVE BEAM WITH SIMULATED DEFECTS

Results of a frequency response analysis of an aluminum beam with simulated de-
fects is presented in this section. Both experimental and numerical data are reported.
The beam, as shown schematically in Figure 5, is instrumented with 0.5 mm-thick
piezoceramic patches that may act as either sensors or actuators. In this case, modeling
through the layerwise approximate theory has to take into account that the thickness as
well as the mechanical, piezoelectric, and dielectric properties of the beam change along
its length. Therefore, as noted elsewhere (Braga et al., 1998; Gama, 1998; de Barros,
1998), the state matrices in equations (6) vary with x in a piece-wise constant fashion.
The electromechanical response is then evaluated by employing an algorithm based on
the invariant imbedding technique (Dieci, 1992; Gama, 1998). Details of the solution
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Figure 3: Through-thickness distribution of displacement and electric potential fields.

Figure 4: Through-thickness distribution of displacement and electric potential fields.

scheme are omitted here due to the lack of space.
Figure 5 also showns a sketch of the experimental setup employed in a series of

measurements of the response of the active beam. The piezoelectric actuators were
excited with white noise signals in a frequency range from DC to 12.8 kHz. In all tests
the beam was suspended by nylon wires and therefore a free-free boundary condition was
assumed in the simulations. Dfects simulating surface breaking cracks were introduced
in the beam by cutting slots with 1.0 and 0.3 mm-thick saw blades. The depth of the
slots varied from zero to 5.5 mm.

Initially, only the central slot, with depth a1 in the sketch of Figure 5, was cut.
Figure 6 shows both numerical and experimental responses measured by sensor S2 for
increasing depths of the central slot. The measured quantity in the experiments was the
voltage across the sensor. In the numerical simulations, where equation (10) is solved for
the active beam, the surface charge density distribution on the sensors electrode, q(x),
was used to quantify the beam’s response. The electric current is evaluated through the
integral

I = −iω

∫ L

0

q(x) b dx (11)



Figure 5: Active aluminum beam and experimetal arrangement (dimensions in mm).

where ω is the angular frequency, L the sensor length, and b the beam width. It
should then been pointed out, that, at this point, comparison between numerical and
experimental data is only qualitative. At any rate, both results indicate that there is
little change in the modal frequency response as the depth to thickness ratio, a1/h,
increases from zero to 0.58.

Figure 6: Frequency response for beam with a2 = 0. Experimental (left): voltage on
sensor S2; Approximate model(right): electric current on top electrode of S2.

In Figure 7 we present experimental and simulated results for a1 = 5.5 mm and
depths of a2 varying from 0 to 3 mm. Now, the amplitude of the response signal,
in particular at frequencies away from the ressonances, is much more sensitive to an
increase in the depth of the slot. Figure 8 shows the variation in the measured voltage
with the ratio a2/h at different frequencies. In Figure 9, we present the simulated
electric charge distribution in the top electrode of sensor S2, evaluated at 4 kHz as the
depth of the slot, a2, increases from 0.5 to 5 mm.

From this set of results, we conclude that positioning the piezoelectric sensor near
the surface breaking defect sharply increases its sensibility to changes in depth, even
for frequencies in the modal range. As an outcome, one may conceive a novel method
for monitoring the growth of surface breaking defects, where the sensor is positioned



Figure 7: Frequency response for beam with a1 =5.5 mm. Experimental (left): voltage
on sensor S2; Approximate model (right): electric current on top electrode of S2.

Figure 8: Decay in measured voltage at
sensor S2, for different frequencies, as
a2/h increases.

Figure 9: Simulated electric charge dis-
tribution on top electrode of S2 as a2/h

increases (4000 Hz).

close to the defect and either broad-band or CW signals are sent from another set of
piezoceramic actuators. As demonstrated by the results reported here, this method
my be applyed even in the low-frequency (modal) range of the structure. Presently,
the authors are conducting a new series of experiments in order to further validate the
proposed approach.

5. CONCLUDING REMARKS

In this paper, we have described a model developed to simulate the electromechan-
ical frequency response of laminated piezoelectric composites. The model is based on
Reddy’s layerwise, laminate theory. It has been verified, by means of comparisons be-
tween the exact and approximate dispersion spectra of guided waves, that the model is
capable of reproducing the structural response in the high-frequency/short-wavelength
range. In particular, if the proper number of interpolation functions is employed, the
proposed approach could be applied to model the excitation, propagation, and sensing of
surface acoustic waves in the composite beam, where the wavelength to thickness ratio
may be as low as 0.25. Results from evaluations of the broad-band, frequency response
of an active aluminum beam with surface breaking defects have also been presented,
and compared with experimental data. The qualitative agreement between numerical



and experimental results was quite satisfactory. In addition, it has been shown that
placing the piezoelectric sensor near the simulated defect, sharply improves its ability
to sense changes in the defect’s depth.

REFERENCES

Badcock, R. A. and Birt, E. A., 1998, “The use of 0-3 piezocomposite embedded Lamb
wave sensors for damage detection in advanced fibre composites”, Proc. of the 4th
European Conference on Smart Structures, Harrogate, UK, July, pp. 373–388.

Braga, A.M.B., Gama, A.L. and de Barros, L.P.F., 1998 “Models for the high frequency
response of active piezoelectric composite beams”, Proc. of the 4th European Conference
on Smart Structures, Harrogate, UK, July 6-8, pp115–122.

Braga, A.M.B., Honein,B.,Barbone, P.E. and Herrmann,G., 1992, “Active Suppression
of Sound Reflected from a Piezoelectric Plate”, J. of Intell. Mat. Sys. & Struct., Vol.3,
pp. 209-223.

Carpenter, M.J., 1997, “Using Energy Methods to Derive Beam Finite Elements Incor-
porating Piezoelectric Materials”, J. of Intell. Mat. Sys. & Struct., Vol.8, pp. 26–40.

de Barros, L.P.F., 1998, “Modelagem de Atuadores Piezoelétricos para Vigas Compósi-
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